Robust Value at Risk Prediction∗
نویسندگان
چکیده
This paper proposes a robust semiparametric bootstrap method to estimate predictive distributions of GARCH-type models. The method is based on a robust estimation of parametric GARCH models and a robustified resampling scheme for GARCH residuals that controls bootstrap instability due to outlying observations. A Monte Carlo simulation shows that our robust method provides more accurate VaR forecasts than classical methods, often by a large extent, especially for several days ahead horizons and/or in presence of outlying observations. An empirical application confirms the simulation results. The robust procedure outperforms in backtesting several other VaR prediction methods, such as RiskMetrics, CAViaR, Historical Simulation, and classical Filtered Historical Simulation methods. We show empirically that robust estimation reduces tail estimation risk, providing more accurate and more stable VaR prediction intervals over time.
منابع مشابه
Robust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملComparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors
Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملGENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES
In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...
متن کاملDiagnostic Value of Risk Nomogram for the Prediction of Postpartum Hemorrhage Following Vaginal Delivery
Background: Postpartum hemorrhage (PPH) is considered as one of the major causes of maternal mortality worldwide. The most effective risk factors have been suggested in various studies on risk nomogram for the prediction of PPH. Aim: This study aimed to determine the diagnostic value of the risk nomogram for the prediction of PPH. Method: Thi...
متن کامل